C++11 lambda表达式精讲
lambda 表达式是 C++11 最重要也最常用的一个特性之一,C# 3.5 和 Java 8 中就引入了 lambda 表达式。
lambda 来源于函数式编程的概念,也是现代编程语言的一个特点。C++11 这次终于把 lambda 加进来了。
lambda表达式有如下优点:
下面,先从 lambda 表达式的基本功能开始介绍它。
因此,一个完整的 lambda 表达式看起来像这样:
在 C++11 中,lambda 表达式的返回值是通过前面介绍的《C++返回值类型后置》语法来定义的。其实很多时候,lambda 表达式的返回值是非常明显的,比如这个例子。因此,C++11 中允许省略 lambda 表达式的返回值定义:
需要注意的是,初始化列表不能用于返回值的自动推导:
另外,lambda 表达式在没有参数列表时,参数列表是可以省略的。因此像下面的写法都是正确的:
下面看一下它的具体用法,如下所示。
【实例】lambda 表达式的基本用法。
需要注意的是,默认状态下 lambda 表达式无法修改通过复制方式捕获的外部变量。如果希望修改这些变量的话,我们需要使用引用方式进行捕获。
一个容易出错的细节是关于 lambda 表达式的延迟调用的:
如果希望 lambda 表达式在调用时能够即时访问外部变量,我们应当使用引用方式捕获。
从上面的例子中我们知道,按值捕获得到的外部变量值是在 lambda 表达式定义时的值。此时所有外部变量均被复制了一份存储在 lambda 表达式变量中。此时虽然修改 lambda 表达式中的这些外部变量并不会真正影响到外部,我们却仍然无法修改它们。
那么如果希望去修改按值捕获的外部变量应当怎么办呢?这时,需要显式指明 lambda 表达式为 mutable:
lambda 表达式的类型在 C++11 中被称为“闭包类型(Closure Type)”。它是一个特殊的,匿名的非 nunion 的类类型。
因此,我们可以认为它是一个带有 operator() 的类,即仿函数。因此,我们可以使用 std::function 和 std::bind 来存储和操作 lambda 表达式:
这里也可以很自然地解释为何按值捕获无法修改捕获的外部变量。因为按照 C++ 标准,lambda 表达式的 operator() 默认是 const 的。一个 const 成员函数是无法修改成员变量的值的。而 mutable 的作用,就在于取消 operator() 的 const。
需要注意的是,没有捕获变量的 lambda 表达式可以直接转换为函数指针,而捕获变量的 lambda 表达式则不能转换为函数指针。看看下面的代码:
【实例】lambda 表达式代替函数对象的示例。
lambda 来源于函数式编程的概念,也是现代编程语言的一个特点。C++11 这次终于把 lambda 加进来了。
lambda表达式有如下优点:
- 声明式编程风格:就地匿名定义目标函数或函数对象,不需要额外写一个命名函数或者函数对象。以更直接的方式去写程序,好的可读性和可维护性。
- 简洁:不需要额外再写一个函数或者函数对象,避免了代码膨胀和功能分散,让开发者更加集中精力在手边的问题,同时也获取了更高的生产率。
- 在需要的时间和地点实现功能闭包,使程序更灵活。
下面,先从 lambda 表达式的基本功能开始介绍它。
lambda 表达式的概念和基本用法
lambda 表达式定义了一个匿名函数,并且可以捕获一定范围内的变量。lambda 表达式的语法形式可简单归纳如下:[ capture ] ( params ) opt -> ret { body; };
其中 capture 是捕获列表,params 是参数表,opt 是函数选项,ret 是返回值类型,body是函数体。因此,一个完整的 lambda 表达式看起来像这样:
auto f = [](int a) -> int { return a + 1; }; std::cout << f(1) << std::endl; // 输出: 2可以看到,上面通过一行代码定义了一个小小的功能闭包,用来将输入加 1 并返回。
在 C++11 中,lambda 表达式的返回值是通过前面介绍的《C++返回值类型后置》语法来定义的。其实很多时候,lambda 表达式的返回值是非常明显的,比如这个例子。因此,C++11 中允许省略 lambda 表达式的返回值定义:
auto f = [](int a){ return a + 1; };
这样编译器就会根据 return 语句自动推导出返回值类型。需要注意的是,初始化列表不能用于返回值的自动推导:
auto x1 = [](int i){ return i; }; // OK: return type is int
auto x2 = [](){ return { 1, 2 }; }; // error: 无法推导出返回值类型
另外,lambda 表达式在没有参数列表时,参数列表是可以省略的。因此像下面的写法都是正确的:
auto f1 = [](){ return 1; };
auto f2 = []{ return 1; }; // 省略空参数表
使用 lambda 表达式捕获列表
lambda 表达式还可以通过捕获列表捕获一定范围内的变量:- [] 不捕获任何变量。
- [&] 捕获外部作用域中所有变量,并作为引用在函数体中使用(按引用捕获)。
- [=] 捕获外部作用域中所有变量,并作为副本在函数体中使用(按值捕获)。
- [=,&foo] 按值捕获外部作用域中所有变量,并按引用捕获 foo 变量。
- [bar] 按值捕获 bar 变量,同时不捕获其他变量。
- [this] 捕获当前类中的 this 指针,让 lambda 表达式拥有和当前类成员函数同样的访问权限。如果已经使用了 & 或者 =,就默认添加此选项。捕获 this 的目的是可以在 lamda 中使用当前类的成员函数和成员变量。
下面看一下它的具体用法,如下所示。
【实例】lambda 表达式的基本用法。
class A { public: int i_ = 0; void func(int x, int y) { auto x1 = []{ return i_; }; // error,没有捕获外部变量 auto x2 = [=]{ return i_ + x + y; }; // OK,捕获所有外部变量 auto x3 = [&]{ return i_ + x + y; }; // OK,捕获所有外部变量 auto x4 = [this]{ return i_; }; // OK,捕获this指针 auto x5 = [this]{ return i_ + x + y; }; // error,没有捕获x、y auto x6 = [this, x, y]{ return i_ + x + y; }; // OK,捕获this指针、x、y auto x7 = [this]{ return i_++; }; // OK,捕获this指针,并修改成员的值 } }; int a = 0, b = 1; auto f1 = []{ return a; }; // error,没有捕获外部变量 auto f2 = [&]{ return a++; }; // OK,捕获所有外部变量,并对a执行自加运算 auto f3 = [=]{ return a; }; // OK,捕获所有外部变量,并返回a auto f4 = [=]{ return a++; }; // error,a是以复制方式捕获的,无法修改 auto f5 = [a]{ return a + b; }; // error,没有捕获变量b auto f6 = [a, &b]{ return a + (b++); }; // OK,捕获a和b的引用,并对b做自加运算 auto f7 = [=, &b]{ return a + (b++); }; // OK,捕获所有外部变量和b的引用,并对b做自加运算从上例中可以看到,lambda 表达式的捕获列表精细地控制了 lambda 表达式能够访问的外部变量,以及如何访问这些变量。
需要注意的是,默认状态下 lambda 表达式无法修改通过复制方式捕获的外部变量。如果希望修改这些变量的话,我们需要使用引用方式进行捕获。
一个容易出错的细节是关于 lambda 表达式的延迟调用的:
int a = 0; auto f = [=]{ return a; }; // 按值捕获外部变量 a += 1; // a被修改了 std::cout << f() << std::endl; // 输出?在这个例子中,lambda 表达式按值捕获了所有外部变量。在捕获的一瞬间,a 的值就已经被复制到f中了。之后 a 被修改,但此时 f 中存储的 a 仍然还是捕获时的值,因此,最终输出结果是 0。
如果希望 lambda 表达式在调用时能够即时访问外部变量,我们应当使用引用方式捕获。
从上面的例子中我们知道,按值捕获得到的外部变量值是在 lambda 表达式定义时的值。此时所有外部变量均被复制了一份存储在 lambda 表达式变量中。此时虽然修改 lambda 表达式中的这些外部变量并不会真正影响到外部,我们却仍然无法修改它们。
那么如果希望去修改按值捕获的外部变量应当怎么办呢?这时,需要显式指明 lambda 表达式为 mutable:
int a = 0; auto f1 = [=]{ return a++; }; // error,修改按值捕获的外部变量 auto f2 = [=]() mutable { return a++; }; // OK,mutable需要注意的一点是,被 mutable 修饰的 lambda 表达式就算没有参数也要写明参数列表。
lambda 表达式的类型
最后,介绍一下 lambda 表达式的类型。lambda 表达式的类型在 C++11 中被称为“闭包类型(Closure Type)”。它是一个特殊的,匿名的非 nunion 的类类型。
因此,我们可以认为它是一个带有 operator() 的类,即仿函数。因此,我们可以使用 std::function 和 std::bind 来存储和操作 lambda 表达式:
std::function<int(int)> f1 = [](int a){ return a; }; std::function<int(void)> f2 = std::bind([](int a){ return a; }, 123);另外,对于没有捕获任何变量的 lambda 表达式,还可以被转换成一个普通的函数指针:
using func_t = int(*)(int); func_t f = [](int a){ return a; }; f(123);lambda 表达式可以说是就地定义仿函数闭包的“语法糖”。它的捕获列表捕获住的任何外部变量,最终均会变为闭包类型的成员变量。而一个使用了成员变量的类的 operator(),如果能直接被转换为普通的函数指针,那么 lambda 表达式本身的 this 指针就丢失掉了。而没有捕获任何外部变量的 lambda 表达式则不存在这个问题。
这里也可以很自然地解释为何按值捕获无法修改捕获的外部变量。因为按照 C++ 标准,lambda 表达式的 operator() 默认是 const 的。一个 const 成员函数是无法修改成员变量的值的。而 mutable 的作用,就在于取消 operator() 的 const。
需要注意的是,没有捕获变量的 lambda 表达式可以直接转换为函数指针,而捕获变量的 lambda 表达式则不能转换为函数指针。看看下面的代码:
typedef void(*Ptr)(int*); Ptr p = [](int* p){delete p;}; // 正确,没有状态的lambda(没有捕获)的lambda表达式可以直接转换为函数指针 Ptr p1 = [&](int* p){delete p;}; // 错误,有状态的lambda不能直接转换为函数指针上面第二行代码能编译通过,而第三行代码不能编译通过,因为第三行的代码捕获了变量,不能直接转换为函数指针。
声明式的编程风格,简洁的代码
就地定义匿名函数,不再需要定义函数对象,大大简化了标准库算法的调用。比如,在 C++11 之前,我们要调用 for_each 函数将 vector 中的偶数打印出来,如下所示。【实例】lambda 表达式代替函数对象的示例。
class CountEven { int& count_; public: CountEven(int& count) : count_(count) {} void operator()(int val) { if (!(val & 1)) // val % 2 == 0 { ++ count_; } } }; std::vector<int> v = { 1, 2, 3, 4, 5, 6 }; int even_count = 0; for_each(v.begin(), v.end(), CountEven(even_count)); std::cout << "The number of even is " << even_count << std::endl;这样写既烦琐又容易出错。有了 lambda 表达式以后,我们可以使用真正的闭包概念来替换掉这里的仿函数,代码如下:
std::vector<int> v = { 1, 2, 3, 4, 5, 6 }; int even_count = 0; for_each( v.begin(), v.end(), [&even_count](int val) { if (!(val & 1)) // val % 2 == 0 { ++ even_count; } }); std::cout << "The number of even is " << even_count << std::endl;lambda 表达式的价值在于,就地封装短小的功能闭包,可以极其方便地表达出我们希望执行的具体操作,并让上下文结合得更加紧密。